Copied to
clipboard

G = C42.367D4order 128 = 27

63rd non-split extension by C42 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.367D4, C42.724C23, (C2×C4)⋊8Q16, (C4×Q16)⋊8C2, C43(C82Q8), C82Q837C2, C4.60(C2×Q16), C42(C4⋊Q16), C4⋊Q1626C2, C8.57(C4○D4), C4.27(C4○D8), C43(C8.18D4), C22.3(C2×Q16), C4⋊C4.109C23, (C2×C4).368C24, (C4×C8).412C22, (C2×C8).565C23, C43(C4.SD16), C4.SD1648C2, C23.396(C2×D4), (C22×C4).620D4, C4⋊Q8.291C22, (C4×Q8).86C22, C2.13(C22×Q16), C8.18D4.12C2, (C2×Q8).111C23, C2.D8.183C22, (C22×C8).540C22, (C2×Q16).129C22, C22.628(C22×D4), C22⋊Q8.177C22, (C2×C42).1137C22, (C22×C4).1573C23, Q8⋊C4.139C22, C23.37C23.35C2, C2.65(C22.26C24), (C2×C4×C8).40C2, C4.53(C2×C4○D4), C2.37(C2×C4○D8), (C2×C4).701(C2×D4), SmallGroup(128,1902)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.367D4
C1C2C4C2×C4C42C4×C8C2×C4×C8 — C42.367D4
C1C2C2×C4 — C42.367D4
C1C2×C4C2×C42 — C42.367D4
C1C2C2C2×C4 — C42.367D4

Generators and relations for C42.367D4
 G = < a,b,c,d | a4=b4=1, c4=d2=a2, ab=ba, ac=ca, dad-1=ab2, bc=cb, dbd-1=a2b, dcd-1=a2c3 >

Subgroups: 292 in 184 conjugacy classes, 100 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C2.D8, C2×C42, C42⋊C2, C4×Q8, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, C22×C8, C2×Q16, C2×C4×C8, C4×Q16, C8.18D4, C4.SD16, C4⋊Q16, C82Q8, C23.37C23, C42.367D4
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C24, C2×Q16, C4○D8, C22×D4, C2×C4○D4, C22.26C24, C22×Q16, C2×C4○D8, C42.367D4

Smallest permutation representation of C42.367D4
On 64 points
Generators in S64
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 55 21 51)(18 56 22 52)(19 49 23 53)(20 50 24 54)(25 31 29 27)(26 32 30 28)(33 39 37 35)(34 40 38 36)(41 63 45 59)(42 64 46 60)(43 57 47 61)(44 58 48 62)
(1 39 31 12)(2 40 32 13)(3 33 25 14)(4 34 26 15)(5 35 27 16)(6 36 28 9)(7 37 29 10)(8 38 30 11)(17 60 53 48)(18 61 54 41)(19 62 55 42)(20 63 56 43)(21 64 49 44)(22 57 50 45)(23 58 51 46)(24 59 52 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 48 5 44)(2 47 6 43)(3 46 7 42)(4 45 8 41)(9 52 13 56)(10 51 14 55)(11 50 15 54)(12 49 16 53)(17 39 21 35)(18 38 22 34)(19 37 23 33)(20 36 24 40)(25 58 29 62)(26 57 30 61)(27 64 31 60)(28 63 32 59)

G:=sub<Sym(64)| (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,55,21,51)(18,56,22,52)(19,49,23,53)(20,50,24,54)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,63,45,59)(42,64,46,60)(43,57,47,61)(44,58,48,62), (1,39,31,12)(2,40,32,13)(3,33,25,14)(4,34,26,15)(5,35,27,16)(6,36,28,9)(7,37,29,10)(8,38,30,11)(17,60,53,48)(18,61,54,41)(19,62,55,42)(20,63,56,43)(21,64,49,44)(22,57,50,45)(23,58,51,46)(24,59,52,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,5,44)(2,47,6,43)(3,46,7,42)(4,45,8,41)(9,52,13,56)(10,51,14,55)(11,50,15,54)(12,49,16,53)(17,39,21,35)(18,38,22,34)(19,37,23,33)(20,36,24,40)(25,58,29,62)(26,57,30,61)(27,64,31,60)(28,63,32,59)>;

G:=Group( (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,55,21,51)(18,56,22,52)(19,49,23,53)(20,50,24,54)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,63,45,59)(42,64,46,60)(43,57,47,61)(44,58,48,62), (1,39,31,12)(2,40,32,13)(3,33,25,14)(4,34,26,15)(5,35,27,16)(6,36,28,9)(7,37,29,10)(8,38,30,11)(17,60,53,48)(18,61,54,41)(19,62,55,42)(20,63,56,43)(21,64,49,44)(22,57,50,45)(23,58,51,46)(24,59,52,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,5,44)(2,47,6,43)(3,46,7,42)(4,45,8,41)(9,52,13,56)(10,51,14,55)(11,50,15,54)(12,49,16,53)(17,39,21,35)(18,38,22,34)(19,37,23,33)(20,36,24,40)(25,58,29,62)(26,57,30,61)(27,64,31,60)(28,63,32,59) );

G=PermutationGroup([[(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,55,21,51),(18,56,22,52),(19,49,23,53),(20,50,24,54),(25,31,29,27),(26,32,30,28),(33,39,37,35),(34,40,38,36),(41,63,45,59),(42,64,46,60),(43,57,47,61),(44,58,48,62)], [(1,39,31,12),(2,40,32,13),(3,33,25,14),(4,34,26,15),(5,35,27,16),(6,36,28,9),(7,37,29,10),(8,38,30,11),(17,60,53,48),(18,61,54,41),(19,62,55,42),(20,63,56,43),(21,64,49,44),(22,57,50,45),(23,58,51,46),(24,59,52,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,48,5,44),(2,47,6,43),(3,46,7,42),(4,45,8,41),(9,52,13,56),(10,51,14,55),(11,50,15,54),(12,49,16,53),(17,39,21,35),(18,38,22,34),(19,37,23,33),(20,36,24,40),(25,58,29,62),(26,57,30,61),(27,64,31,60),(28,63,32,59)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O···4V8A···8P
order12222244444···44···48···8
size11112211112···28···82···2

44 irreducible representations

dim1111111122222
type++++++++++-
imageC1C2C2C2C2C2C2C2D4D4C4○D4Q16C4○D8
kernelC42.367D4C2×C4×C8C4×Q16C8.18D4C4.SD16C4⋊Q16C82Q8C23.37C23C42C22×C4C8C2×C4C4
# reps1144211222888

Matrix representation of C42.367D4 in GL4(𝔽17) generated by

1000
01600
00115
00116
,
4000
0400
00115
00116
,
1000
0100
00011
00311
,
0100
1000
001114
0016
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,1,1,0,0,15,16],[4,0,0,0,0,4,0,0,0,0,1,1,0,0,15,16],[1,0,0,0,0,1,0,0,0,0,0,3,0,0,11,11],[0,1,0,0,1,0,0,0,0,0,11,1,0,0,14,6] >;

C42.367D4 in GAP, Magma, Sage, TeX

C_4^2._{367}D_4
% in TeX

G:=Group("C4^2.367D4");
// GroupNames label

G:=SmallGroup(128,1902);
// by ID

G=gap.SmallGroup(128,1902);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,520,80,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=d^2=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^3>;
// generators/relations

׿
×
𝔽